211 research outputs found

    Automatic test cases generation from software specifications modules

    Get PDF
    A new technique is proposed in this paper to extend the Integrated Classification Tree Methodology (ICTM) developed by Chen et al. [13] This software assists testers to construct test cases from functional specifications. A Unified Modelling Language (UML) class diagram and Object Constraint Language (OCL) are used in this paper to represent the software specifications. Each classification and associated class in the software specification is represented by classes and attributes in the class diagram. Software specification relationships are represented by associated and hierarchical relationships in the class diagram. To ensure that relationships are consistent, an automatic methodology is proposed to capture and control the class relationships in a systematic way. This can help to reduce duplication and illegitimate test cases, which improves the testing efficiency and minimises the time and cost of the testing. The methodology introduced in this paper extracts only the legitimate test cases, by removing the duplicate test cases and those incomputable with the software specifications. Large amounts of time would have been needed to execute all of the test cases; therefore, a methodology was proposed which aimed to select a best testing path. This path guarantees the highest coverage of system units and avoids using all generated test cases. This path reduces the time and cost of the testing

    Plasticity in Photosynthetic Performance and Energy Utilization Efficiency in Triticum aestivum L., Secale cereale L. and Brassica napus L. in Response to Low Temperature and Hig CO2

    Get PDF
    I assessed the effects of cold acclimation and long-term elevated CO2 on photosynthetic performance and energy conversion efficiency of winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) as well as wild type (WT) and BnCBF17-over-expressing line (BnCBF17-OE) of Brassica napus cv Westar. Plants were grown at either 20/16°C (non-acclimated, NA) or 5/5°C (cold acclimated, CA) and at either ambient (380 µmol C mol-1) or elevated (700 µmol C mol-1) CO2.Compared to NA controls, CA winter cereals, Norstar and Musketeer, exhibited compact dwarf phenotype, increased rates of light-saturated CO2 assimilation (42%) and photosynthetic electron transport (48%) and higher levels of rbcL, cytosolic FBPase, Lhcb1, PsbA and PsaA at ambient CO2. This was associated with enhanced energy conversion efficiency into biomass (31%) and seed yield (20%) coupled to decreased excitation pressure and decreased energy dissipation through non-photochemical quenching (NPQ) for a given irradiance and a given CO2 concentration in CA versus NA winter cereals. The increased photosynthetic performance and energy conversion efficiency of CA winter cereals at ambient CO2 were maintained under long-term growth and development at elevated CO2. In contrast, CA spring cereals, SR4A and Katepwa, exhibited decreased CO2 assimilation rates (35%) and decreased energy conversion efficiency in biomass (40%) not only at ambient CO2 but also at long-term elevated CO2. BnCBF17-over-expression in Brassica napus resulted into dwarf phenotype, increased rates of light-saturated CO2 assimilation (38%) and photosynthetic electron transport (18%), an enhanced energy conversion efficiency with concomitant decreased reliance on photoprotection to dissipate absorbed energy through NPQ for a given irradiance and a given CO2. Compared to WT Brassica napus, BnCBF17-over-expression reduced sensitivity to feedback-limited photosynthesis during long-term growth of B. napus under elevated CO2. CBFs (C-repeat binding factors) are transcriptional activators that induce the expression of cold-regulated genes. We suggest that CBFs regulate not only freezing tolerance but also control the photosynthetic performance and energy conversion efficiency in biomass and grain yield through morphological, physiological and biochemical adjustments. Hence, targeting the CBF pathways in major crop species can be a novel approach to improve crop yield and productivity

    Experimental Case Studies for Investigating E-Banking Phishing Techniques and Attack Strategies

    Get PDF
    Phishing is a form of electronic identity theft in which a combination of social engineering and web site spoofing techniques are used to trick a user into revealing confidential information with economic value. The problem of social engineering attack is that there is no single solution to eliminate it completely, since it deals largely with the human factor. This is why implementing empirical experiments is very crucial in order to study and to analyze all malicious and deceiving phishing website attack techniques and strategies. In this paper, three different kinds of phishing experiment case studies have been conducted to shed some light into social engineering attacks, such as phone phishing and phishing website attacks for designing effective countermeasures and analyzing the efficiency of performing security awareness about phishing threats. Results and reactions to our experiments show the importance of conducting phishing training awareness for all users and doubling our efforts in developing phishing prevention techniques. Results also suggest that traditional standard security phishing factor indicators are not always effective for detecting phishing websites, and alternative intelligent phishing detection approaches are needed

    Comparative performance of intelligent algorithms for system identification and control

    Get PDF
    This paper presents an investigation into the comparative performance of intelligent system identification and control algorithms within the framework of an active vibration control (AVC) system. Evolutionary Genetic algorithms (GAs) and Adaptive Neuro-Fuzzy Inference system (ANFIS) algorithms are used to develop mechanisms of an AVC system, where the controller is designed based on optimal vibration suppression using the plant model. A simulation platform of a flexible beam system in transverse vibration using finite difference (FD) method is considered to demonstrate the capabilities of the AVC system using GAs and ANFIS. MATLAB GA tool box for GAs and Fuzzy Logic tool box for ANFIS function are used to design the AVC system. The system is men implemented, tested and its performance assessed for GAs and ANFIS based algorithms. Finally, a comparative performance of the algorithms in implementing system identification and corresponding AVC system using GAs and ANFIS is presented and discussed through a set of experiments
    corecore